Benha University Faculty of Engineering (at Shoubra) Electrical Engineering Department M.Sc. (Computer Systems Engineering)

Attempt the following questions.

Midterm Exam Subject: Advanced Algorithms - CES 608 Date: Sat 02/04/2016 Duration: 30 minutes

No of Questions: 3 in 3 page(s) Total Mark: 30

Question 1:

(10 Marks)

Consider the problem of adding two *n*-bit binary integers, stored in two *n*-element arrays *A* and *B*. The sum of the two integers should be stored in binary form in an (n+1)-element array *C*. State the problem formally and write pseudocode for adding the two integers.

Solution:

This is how the given problem can be formally defined:

Input: Two *n*-bit binary integers, stored in two *n*-element arrays *A* and *B*.

Output: An (n+1)-element array *C* representing the sum of the two integers stored in *A* and *B*.

This is the pseudocode:

```
ADD-BINARY(A, B)

1 n = A. length

2 let C[1..n+1] be a new array

3 c = 0

4 for i = 1 to n

5 C[i] = (A[i] + B[i] + c) \mod 2

6 c = (A[i] + B[i] + c) / 2

7 C[i] = c

8 return C
```

Question 2:

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n) = T(\alpha n) + T((1 - \alpha)n) + cn$, where α is a constant in the range $0 < \alpha < 1$ and c > 0 is also a constant. Verify your solution by the substitution method.

Solution:

Without loss of generality, let $\alpha \ge 1-\alpha$, so that $0 < 1-\alpha \le 1/2$ and $1/2 \le \alpha < 1$.

The recursion tree is full for $\log_{1/(1-\alpha)} n$ levels, each contributing cn, so we guess $\Omega(n \log_{1/(1-\alpha)} n) = \Omega(n \lg n)$. It has $\log_{1/\alpha} n$ levels, each contributing $\leq cn$, so we guess $O(n \log_{1/\alpha} n) = O(n \lg n)$.

Now we show that $T(n) = \Theta(n \lg n)$ by substitution. To prove the upper bound, we need to show that $T(n) \le dn \lg n$ for a suitable constant d > 0.

$$T(n) = T(\alpha n) + T((1 - \alpha)n) + cn$$

$$\leq d\alpha n \lg(\alpha n) + d(1 - \alpha)n \lg((1 - \alpha)n) + cn$$

$$= d\alpha n \lg \alpha + d\alpha n \lg n + d(1 - \alpha)n \lg(1 - \alpha) + d(1 - \alpha)n \lg n + cn$$

$$= dn \lg n + dn(\alpha \lg \alpha + (1 - \alpha) \lg(1 - \alpha)) + cn$$

$$\leq dn \lg n ,$$

if $dn(\alpha \lg \alpha + (1 - \alpha) \lg(1 - \alpha)) + cn \leq 0$. This condition is equivalent to

 $d(\alpha \lg \alpha + (1-\alpha) \lg (1-\alpha)) \le -c .$

Since $1/2 \le \alpha < 1$ and $0 < 1 - \alpha \le 1/2$, we have that $\lg \alpha < 0$ and $\lg(1-\alpha) < 0$. Thus, $\alpha \lg \alpha + (1 - \alpha) \lg(1 - \alpha) < 0$, so that when we multiply both sides of the inequality by this factor, we need to reverse the inequality:

$$d \ge \frac{-c}{\alpha \lg \alpha + (1-\alpha) \lg (1-\alpha)}$$

or

$$d \geq \frac{c}{-\alpha \lg \alpha + -(1-\alpha) \lg (1-\alpha)}$$

The fraction on the right-hand side is a positive constant, and so it suffices to pick any value of d that is greater than or equal to this fraction.

To prove the lower bound, we need to show that $T(n) \ge dn \lg n$ for a suitable constant d > 0. We can use the same proof as for the upper bound, substituting \ge for \le , and we get the requirement that

$$0 < d \le \frac{c}{-\alpha \lg \alpha - (1 - \alpha) \lg (1 - \alpha)}$$

Therefore, $T(n) = \Theta(n \lg n)$.

Question 3:

Suppose that instead of swapping element A[i] with a random element from the subarray A[i..n], we swapped it with a random element from anywhere in the array:

PERMUTE-WITH-ALL(A) 1 n = A.length2 for i = 1 to n3 swap A[i] with A[RANDOM(1,n)]

Does this code produce a uniform random permutation? Why or why not?

Solution:

In the original and modified algorithm, line 3 is executed n times. For every index $i = 1 \dots n$ in the original algorithm, there are n - i + 1 possible values returned by the random number generator. This means that there are $\prod_{i=1}^{n} (n - i + 1) = n!$ possible sequences each with probability 1/n!. On the other hand, for every index $i = 1 \dots n$ in the modified algorithm, there are n possible values returned by the random number generator. This means that there are $\prod_{i=1}^{n} (n) = n^n$ possible values returned by the random number generator. This means that there are $\prod_{i=1}^{n} (n) = n^n$ possible sequences each with probability $1/n^n$. Given that there are only n! distinct permutations and n^n is not divisible by n!, then it is clear that some permutations will appear more frequently than others as a result of every possible sequence. Consequently, the modified algorithm does **not** produce a uniform random permutation.

Good Luck Dr. Islam ElShaarawy