Benha University
Faculty of Engineering (at Shoubra)
Electrical Engineering Department
M.Sc. (Computer Systems Engineering)

Attempt the following questions.

Midterm Exam
Subject: Advanced Algorithms - CES 608
Duration: 30 minutes
№ of Questions: 3 in 3 page(s)
Total Mark: 30

Question 1:

(10 Marks)
Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B.
The sum of the two integers should be stored in binary form in an $(n+1)$-element array C.
State the problem formally and write pseudocode for adding the two integers.

Solution:

This is how the given problem can be formally defined:
Input: Two n-bit binary integers, stored in two n-element arrays A and B.
Output: An $(n+1)$-element array C representing the sum of the two integers stored in A and B.
This is the pseudocode:

```
Add-Binary \((A, B)\)
\(1 n=A . l e n g t h\)
2 let C[1..n+1] be a new array
\(3 c=0\)
4 for \(i=1\) to \(n\)
\(5 C[i]=(A[i]+B[i]+c) \bmod 2\)
\(6 \quad c=(A[i]+B[i]+c) / 2\)
\(7 C[i]=\mathrm{c}\)
8 return C
```

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n)=T(\alpha n)+T((1-\alpha) n)+c n$, where α is a constant in the range $0<\alpha<1$ and $c>0$ is also a constant. Verify your solution by the substitution method.

Solution:

Without loss of generality, let $\alpha \geq 1-\alpha$, so that $0<1-\alpha \leq 1 / 2$ and $1 / 2 \leq \alpha<1$.

The recursion tree is full for $\log _{1 /(1-\alpha)} n$ levels, each contributing $c n$, so we guess $\Omega\left(n \log _{1 /(1-\alpha)} n\right)=\Omega(n \lg n)$. It has $\log _{1 / \alpha} n$ levels, each contributing $\leq c n$, so we guess $O\left(n \log _{1 / \alpha} n\right)=O(n \lg n)$.
Now we show that $T(n)=\Theta(n \lg n)$ by substitution. To prove the upper bound, we need to show that $T(n) \leq d n \lg n$ for a suitable constant $d>0$.

$$
\begin{aligned}
T(n) & =T(\alpha n)+T((1-\alpha) n)+c n \\
& \leq d \alpha n \lg (\alpha n)+d(1-\alpha) n \lg ((1-\alpha) n)+c n \\
& =d \alpha n \lg \alpha+d \alpha n \lg n+d(1-\alpha) n \lg (1-\alpha)+d(1-\alpha) n \lg n+c n \\
& =d n \lg n+d n(\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha))+c n \\
& \leq d n \lg n,
\end{aligned}
$$

if $d n(\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha))+c n \leq 0$. This condition is equivalent to
$d(\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha)) \leq-c$.
Since $1 / 2 \leq \alpha<1$ and $0<1-\alpha \leq 1 / 2$, we have that $\lg \alpha<0$ and $\lg (1-\alpha)<0$.
Thus, $\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha)<0$, so that when we multiply both sides of the inequality by this factor, we need to reverse the inequality:
$d \geq \frac{-c}{\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha)}$
or
$d \geq \frac{c}{-\alpha \lg \alpha+-(1-\alpha) \lg (1-\alpha)}$.
The fraction on the right-hand side is a positive constant, and so it suffices to pick any value of d that is greater than or equal to this fraction.

To prove the lower bound, we need to show that $T(n) \geq d n \lg n$ for a suitable constant $d>0$. We can use the same proof as for the upper bound, substituting \geq for \leq, and we get the requirement that
$0<d \leq \frac{c}{-\alpha \lg \alpha-(1-\alpha) \lg (1-\alpha)}$.
Therefore, $T(n)=\Theta(n \lg n)$.

Suppose that instead of swapping element $A[i]$ with a random element from the subarray $A[i . . n]$, we swapped it with a random element from anywhere in the array:

```
Permute-With-All (A)
\(1 n=A . l e n g t h\)
2 for \(i=1\) to \(n\)
3 swap \(A[i]\) with \(A[\operatorname{Random}(1, n)]\)
```

Does this code produce a uniform random permutation? Why or why not?

Solution:

In the original and modified algorithm, line 3 is executed n times. For every index $i=1 \ldots n$ in the original algorithm, there are $n-i+1$ possible values returned by the random number generator. This means that there are $\prod_{i=1}^{n}(n-i+1)=n$! possible sequences each with probability $1 / n$!. On the other hand, for every index $i=1 \ldots n$ in the modified algorithm, there are n possible values returned by the random number generator. This means that there are $\prod_{i=1}^{n}(n)=n^{n}$ possible sequences each with probability $1 / n^{n}$. Given that there are only $n!$ distinct permutations and n^{n} is not divisible by n !, then it is clear that some permutations will appear more frequently than others as a result of every possible sequence. Consequently, the modified algorithm does not produce a uniform random permutation.

Good Luck
Dr. Islam ElShaarawy

